From Protein Domains to Drug Candidates—Natural Products as Guiding Principles in the Design and Synthesis of Compound Libraries

Author(s):  
Rolf Breinbauer ◽  
Ingrid R. Vetter ◽  
Herbert Waldmann
2018 ◽  
Vol 16 (17) ◽  
pp. 3160-3167 ◽  
Author(s):  
Anthony Aimon ◽  
George Karageorgis ◽  
Jacob Masters ◽  
Mark Dow ◽  
Philip G. E. Craven ◽  
...  

Design and synthesis of compound libraries with focused molecular properties, based on NP-like scaffolds.


Synthesis ◽  
2021 ◽  
Author(s):  
Michael P. Badart ◽  
Bill C. Hawkins

AbstractThe spirocyclic motif is abundant in natural products and provides an ideal three-dimensional template to interact with biological targets. With significant attention historically expended on the synthesis of flat-heterocyclic compound libraries, methods to access the less-explored three-dimensional medicinal-chemical space will continue to increase in demand. Herein, we highlight by reaction class the common strategies used to construct the spirocyclic centres embedded in a series of well-studied natural products.1 Introduction2 Cycloadditions3 Palladium-Catalysed Coupling Reactions4 Conjugate Additions5 Imines, Aminals, and Hemiaminal Ethers6 Mannich-Type Reactions7 Oxidative Dearomatisation8 Alkylation9 Organometallic Additions10 Conclusions


Biomolecules ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1518 ◽  
Author(s):  
Ana L. Chávez-Hernández ◽  
Norberto Sánchez-Cruz ◽  
José L. Medina-Franco

Natural products and semi-synthetic compounds continue to be a significant source of drug candidates for a broad range of diseases, including coronavirus disease 2019 (COVID-19), which is causing the current pandemic. Besides being attractive sources of bioactive compounds for further development or optimization, natural products are excellent substrates of unique substructures for fragment-based drug discovery. To this end, fragment libraries should be incorporated into automated drug design pipelines. However, public fragment libraries based on extensive collections of natural products are still limited. Herein, we report the generation and analysis of a fragment library of natural products derived from a database with more than 400,000 compounds. We also report fragment libraries of a large food chemical database and other compound datasets of interest in drug discovery, including compound libraries relevant for COVID-19 drug discovery. The fragment libraries were characterized in terms of content and diversity.


2018 ◽  
Vol 16 (1) ◽  
pp. 89-100 ◽  
Author(s):  
Jinwoo Kim ◽  
Ikyon Kim

A chemical backbone of tetracyclic homoisoflavanoid natural products such as brazilin inspired us to design a new chemical scaffold, 6a,11b-dihydroindeno[2,1-c]chromen-7(6H)-one, which is a hybrid structure of indanone and chromane.


2019 ◽  
Vol 24 (3) ◽  
pp. 346-361 ◽  
Author(s):  
Carolina B. Moraes ◽  
Gesa Witt ◽  
Maria Kuzikov ◽  
Bernhard Ellinger ◽  
Theodora Calogeropoulou ◽  
...  

According to the World Health Organization, more than 1 billion people are at risk of or are affected by neglected tropical diseases. Examples of such diseases include trypanosomiasis, which causes sleeping sickness; leishmaniasis; and Chagas disease, all of which are prevalent in Africa, South America, and India. Our aim within the New Medicines for Trypanosomatidic Infections project was to use (1) synthetic and natural product libraries, (2) screening, and (3) a preclinical absorption, distribution, metabolism, and excretion–toxicity (ADME-Tox) profiling platform to identify compounds that can enter the trypanosomatidic drug discovery value chain. The synthetic compound libraries originated from multiple scaffolds with known antiparasitic activity and natural products from the Hypha Discovery MycoDiverse natural products library. Our focus was first to employ target-based screening to identify inhibitors of the protozoan Trypanosoma brucei pteridine reductase 1 ( TbPTR1) and second to use a Trypanosoma brucei phenotypic assay that made use of the T. brucei brucei parasite to identify compounds that inhibited cell growth and caused death. Some of the compounds underwent structure-activity relationship expansion and, when appropriate, were evaluated in a preclinical ADME-Tox assay panel. This preclinical platform has led to the identification of lead-like compounds as well as validated hits in the trypanosomatidic drug discovery value chain.


2000 ◽  
Vol 6 (7-8) ◽  
pp. 550-562 ◽  
Author(s):  
J�rgen Bajorath ◽  
Ling Xue ◽  
Jeffrey W. Godden ◽  
Florence L. Stahura

Sign in / Sign up

Export Citation Format

Share Document